Попытки доказательства V постулата Евклида

Педагогические практики » Параллельные прямые в курсе основной школы » Попытки доказательства V постулата Евклида

параллельный геометрия учащийся треугольник

Первые 28 предложений «Начал» не опираются на V постулат, возможно Евклид старался отодвинуть применение этого постулата до тех пор, пока использование его не станет настоятельно необходимым.

Попытки доказать пятый постулат продолжались с тех пор в течение 2000 лет. Их предпринимало множество ученых. Вот неполный перечень:

греки Птолемей (2 в. н. э., тот самый Птолемей, "которого система") и Прокл (5 в.),

араб ал-Хайсам (10 в.),

перс (или таджик) Омар Хайям (11 в. - начало 12 в., тот самый Хайям, который известен как великий поэт),

азербайджанец ат-Туси (13 в.),

немец Клавий-Шлюссель (1514; здесь и дальше дата работы),

итальянцы Катальди (1603), Борелли (1658) и Витале (1680),

англичанин Валлис (1663),

итальянец Саккери (1733),

немец Ламберт (1766),

французы Бертран (1778) и Лежандр (1794, 1823),

русский Гурьев (1798).

Все их попытки сводились к тому, что пятый постулат выводился из какого-нибудь другого положения. При этом многие не замечали этого, считая, что доказательство им удалось. Другие, более проникновенные и критичные, явно формулировали то положение, из которого выводили пятый постулат, как это сделал, например, Омар Хайям.

Одни математики старались доказать постулат о параллельных, применяя только другие постулаты и те теоремы, которые можно вывести из последних, не используя сам V постулат. Все такие попытки оказались неудачными. Их общий недостаток в том, что в доказательстве неявно применялось какое-нибудь предположение, равносильное доказываемому постулату.

Другие предлагали по-новому определить параллельные прямые или же заменить V постулат каким-либо, по их мнению, более очевидным предложением. Так, например, в XI веке Омар Хайям ввел вместо V постулата «принцип», согласно которому две лежащие в одной плоскости сходящиеся прямые пересекаются и не могут расходиться в направлении схождения. С помощью этого принципа Хайям доказывает, что в четырехугольнике ABCD, в котором углы при основании А и В – прямые и стороны АС, ВD равны, углы С и D так же прямые, а из этого предложения о существовании прямоугольника выводится V постулат. Рассуждения Хайяма получили оригинальное развитие в XIII веке у Насирэдинна ат-Туси, работы которого в свою очередь стимулировали исследования Д. Валлиса. В 1663 году Валлис доказал постулат о параллельных, исходя из явного допущения, что для каждой фигуры существует подобная ей фигура произвольной величины. Это допущение он считал вытекающим из существа пространственных отношений.

С логической точки зрения результаты Хайяма или Валлиса лишь выявляли равносильность V постулата и некоторых других предложений геометрии. Так, Хайям, по существу, установил эквивалентность постулата и предложения о сумме углов треугольника, а Валлис показал, что не только из V постулата можно вывести учение о подобии, но и обратно – их евклидова учения о подобии следует V постулат.

Новости образования:

Готовность учеников решать проблемные задания
Привлечение детей к решению проблемного задания возможно при условии общей и локальной готовности их к этому виду деятельности. Прежде чем рассмотреть содержание общей и локальной готовности, нужно выяснить особенности деятельности, которая осуществляется в процессе выполнения проблемного задания. ...

Возрастные особенности младших школьников
Рост и вес. В возрасте от 6 до 12 лет большинство детей прибавляет в росте по 5-7 см в год. Средний рост 6-ти летних детей составляет лишь 1.22 м, к подростковому возрасту, он увеличивается до 1.52 м. Обычно в 6 лет девочки немного ниже мальчиков, догоняя их к 9-ти годам и немного обгоняя к 10-ти. ...

Характеристика игровых технологий
В современной школе возникает насущная потребность в расширении методического потенциала в целом, и в активных формах обучения в частности. К таким активным формам обучения, недостаточно освещенным в методике преподавания русского языка, относятся игровые технологии. Понятие «игровые педагогические ...

Главное на сайте

Copyright © 2025 - All Rights Reserved - www.focuseducation.ru