Крас. ваза – 7 роз
Зел. ваза - ?, на 4 больше
Таким образом, преобразовав задачу, мы изменили отношения между объектами задачи с «меньше на» на «больше на».
3. изменение связи между числовыми данными в условии и числовыми данными условия и требования.
Например, дана задача: «У Маши было 5 рублей, а у Вити на 3 больше. Сколько денег у Вити?»
Составим краткую запись:
Маша – 5 руб.
Витя - ?, на 3 больше
Преобразуем задачу.
Например: «У Маши было 5 рублей, а у Вити на 3 меньше. Сколько денег у Вити и Маши вместе?»
Составим краткую запись:
Маша – 5 руб.
Витя - ?, на 3 меньше
Таким образом, мы преобразовали простую задачу в составную и изменили отношения между объектами задачи с «меньше на» на «больше на».
Упражнения по преобразованию задач является чрезвычайно эффективными для обобщения способа их решения.
Методисты включают в работу по преобразованию задач следующие виды упражнений:
1. Изменение поставленного к условию задачи вопроса.
2. Изменение условия задачи без изменения поставленного вопроса.
3. Изменение условия и вопроса задачи.
4. Преобразование данных задач в задачи родственных им видов, т.е в «задачи, в которых величины связаны одинаковой зависимостью. Так, родственными будут задачи на нахождение четвертого пропорционального, на пропорциональное деление и на нахождение неизвестных по двум разностям, так как в них величины связаны пропорциональной зависимостью. Можно одну задачу преобразовать в другую родственного вида путем выполнения арифметических действий над числовыми значениями величин. В результате такого преобразования и сравнения способов решения задач родственных видов приведем детей к обобщению способов решения этих задач». [3, с. 175]
5. Составление аналогичных задач, т.е. составление задач, имеющих одинаковую математическую структуру, не изменяя связь между данными и искомым. Аналогичные задачи надо составлять после решения данной готовой задачи, предлагая при этом, когда возможно, изменять не только сюжет и числа, но и величины.
6. Составление обратных задач, т.е. составление задач, в которых «при тех же условиях одно из данных первой задачи служит искомым во второй и искомое первой входит в число данных второй». [21, с. 12] При составлении обратных задач связи между числовыми данными не должны изменяться.
Мы же остановимся в нашей дипломной работе на первых трёх видах упражнений, и будем говорить о преобразовании задач, подразумевая именно изменение поставленного к условию задачи вопроса, изменение условия задачи без изменения поставленного вопроса, изменение условия и вопроса задачи, т.к. именно этим видам работ уделено наименьшее количество внимания в методических пособиях.
Изменение поставленного вопроса.
После решения некоторых задач полезно предложить детям изменить вопрос задачи. Например, пусть ученики решили задачу: Два поезда вышли одновременно навстречу друг другу из Москвы и Киева. Московский поезд проходил 68км в час, а киевский 75км в час. Через сколько часов поезда встретятся, если расстояние от Москвы до Киева 858км?» После решения задачи можно предложить изменить вопрос так, чтобы спрашивалось о расстоянии. Учащиеся могут поставить такие вопросы: На каком расстоянии от Москвы (от Киева) произошла встреча? Какое расстояние прошел каждый поезд до встречи? Какое расстояние надо пройти каждому поезду после встреча до места назначения? На сколько километров больше прошел до встречи киевский поезд? И т.д.
Этот прием используется с различной дидактической целью.
Во многих случаях целесообразно вводить некоторые ограничения. Например, предлагается изменить вопрос так, чтобы задача решалась одним действием, двумя действиями и т.д., или чтобы задача решалась указанным действием. Такие задания предусмотрены программой и находят отражение в учебниках математики для I и II классов, но редко используются на уроке из-за недостатка времени, несмотря на то, что применение его приносит большую пользу и позволяет более полно использовать условие той или иной задачи.
Задаваемые вопросы и поиск ответов на них дают возможность решить не одну, а несколько задач по одному и тому же условию, позволяют более полно использовать условие задачи, экономить время, которое тратится на осмысление содержания и выполнение наглядной интерпретации (краткой записи) задач. Кроме того, постановка различных вопросов к задаче и затем ее решение развивают мышление. Также эти упражнения помогают обобщению знаний о связях между данными и искомым, так как при этом дети устанавливают, что можно узнать по определенным данным.
Новости образования:
Анализ эффективности предложенной системы занятий по развитию произвольной
памяти младших школьников с интеллектуальными нарушениями
Целью данного этапа эксперимента являлось: Выявление эффективности использования дидактической игры в процессе развития произвольной памяти младших школьников с интеллектуальными нарушениями. Формирование на основе полученных данных системы дидактических игр по математике, направленных на развитие ...
Сущность игровых технологий
дидактическая игра педагогический число Человеческая культура возникла и развертывается в игре, как игра. И. Хейзинга. Игра наряду с трудом и учением - один из основных видов деятельности человека, удивительный феномен нашего существования. Игра- это вид деятельности в условиях ситуаций, направленн ...
Использование НИТ в организации ученического самоуправления
Существует достаточно большое количество научно-педагогических исследований, доказывающих, что различные формы внеучебной деятельности имеют сравнимую, а иногда даже большую, чем традиционные формы обучения эффективность в образовательном процессе. В концепции воспитательной школы определена модель ...