Развитие логического мышления при обучении математике

Страница 3

Методист И.А. Гибш, выделяя аспекты проблемы развития логического мышления, подчеркивал необходимость формирова­ния умений учащихся: по подведению объектов под определение, классификации понятий, выведению следствий из определения, развитию умений пользоваться суждениями и умозаключениями, получать новые умозаключения на основании правил вывода и законов логики, пользоваться терминами «необходимо» и «дос­таточно», использовать различные приемы и виды доказательств. В недалеком прошлом крайнюю точку зрения в плане развития логического мышления учащихся отстаивал методист А. А. Сто­ляр, который считал необходимым на определенном этапе обуче­ния знакомить учащихся с элементами математической логики.

В работе И.Л. Никольской и Е.Е. Семенова выделены зна­ния и умения, которыми, по мнению авторов, выпускник школы должен владеть: уметь правильно формулировать определение знакомого понятия, классифицировать, понимать значение свя­зок «и» и «или», уметь строить отрицание утверждений, содержа­щих кванторы, понимать смысл терминов «если ., то .», «тогда и только тогда, когда», «не более», «не менее» и т. д.

Основной задачей формальной логики является отделение пра­вильных способов рассуждения от неправильных. Рассуждение можно считать верным лишь в том случае, если из истинных суж­дений – посылок нельзя получить ложное суждение - ложное заключение. Рассуждение, допускающее получение ложного заклю­чения из истинных посылок, не только не расширяет наши знания об окружающем мире, но доставляет о нем неправильную инфор­мацию. Поэтому такие рассуждения недопустимы.

Совокупность общественной практики, являющейся критери­ем истинности получаемых суждений из имеющихся, вылилась в ряд правил, законов, которые зависят только от формы рассужде­ний, от взаимосвязей составных частей рассуждения, но не от их содержания. Отсюда понятна важность законов и правил выво­да. О формах мышления и правилах вывода не ведется разговора ни в одном школьном предмете, хотя все предметы их широко используют. И это, вероятно, справедливо - не обязательно знать законы пищеварения, чтобы правильно переваривать пищу.

Говоря о логической составляющей в обучении учащихся ос­тановимся на смысле фразы, что логика приводит мысли в поря­док, выясним, какой смысл вкладывал М.В. Ломоносов в извест­ные его слова о том, что математика ум в порядок приводит.

Установить порядок на некотором множестве объектов – зна­чит пронумеровать их. Существуют определения строгого и не­строгого порядков. Можно установить порядок на множестве понятий и на множестве высказываний. Порядок на множестве понятий определяется с помощью отношения «предшествовать». Пример: понятие отрезок предшествует понятию многоугольник. Никакое понятие не предшествует самому себе. Порядок на мно­жестве суждений можно установить с помощью отношения «сле­довать», «быть следствием». Теорема о вписанном угле треуголь­ника следует из теоремы о сумме углов треугольника. Отношение «предшествовать» – отношение строгого порядка, отношение «следовать» – пример отношения нестрогого порядка.

Дедуктивное (аксиоматическое) построение курса математи­ки и есть наведение порядка на множестве понятий и суждений.

Почему важно, чтобы имеющаяся в голове человека информа­ция была упорядочена? На этот вопрос ответ можно найти в рабо­те А.А. Столяра: «Эта информация может оказаться в уме челове­ка неупорядоченной, т.е. размытые знания - изолированными, несвязанными между собой и поэтому малоэффективными в каче­стве исходного материала для получения новых знаний. Во-вто­рых, возможно также, эта информация будет лежать «мертвым грузом», т. е. заполнять лишь память человека, но не преобразо­вываться им, не использоваться для получения новых знаний ло­гическим путем, с помощью рассуждений».

Анализ содержания школьного курса математики позволяет выявить те логические действия, которые выполняются учащи­мися, изучающими дедуктивно построенный математический курс. Номенклатура умений может быть упорядочена следующим образом:

Учащиеся должны уметь:

♦ формулировать определения понятий с использованием раз­личных связок и кванторов;

♦ приводить примеры понятий, подводить объекты под опреде­ления различных логических конструкций;

♦ приводить контрпримеры, т. е. строить отрицание определе­ний различных логических конструкций;

♦ понимать отношения между двумя понятиями;

♦ проводить классификацию известных понятий;

♦ понимать свойства конкретных отношений – рефлективность, симметричность, транзитивность – без употребления соответ­ствующей терминологии;

Страницы: 1 2 3 4 5

Новости образования:

Особенности культуры педагогической деятельности
Культура человека, особенно взрослого, многоаспектна, и единое, общепризнанное понятие "культура" ¹ отсутствует. Мы под культурой понимаем "определенный уровень развития общества и человека, выраженный в типах и формах организации жизни и деятельности людей, а также в создаваемы ...

Технология изготовления
Порядок выполнения работ Содержание работ Необходимое оборудование Необходимые инструменты Изготовление заготовки для ножки. Необходимо взять дубовый брус, диаметром примерно 155 мм. Далее нужно остругать брус, выдерживая необходимые размеры и углы. Электрорубанок, электрофуганок, циркулярная пила. ...

Рекомендации для педагогов по развитию дизайнерского мышления у дошкольников
При организации творческой, дизайнерской деятельности педагогу предлагаются следующие рекомендации: Вовлекайте ребенка в учебный процесс, используя игровые приемы, способствующие развитию интереса к дизайн - деятельности; Стимулируйте интеллектуальные усилия ребенка; Повышайте уверенность ребенка в ...

Главное на сайте

Copyright © 2025 - All Rights Reserved - www.focuseducation.ru