К понятию о параллельных прямых следует подвести учащихся следующим образом. Учащимся предлагается провести произвольную прямую АВ, отметить на ней две близлежащие точки М и N, и провести через эти точки к прямой АВ перпендикуляры ММ1 и NN1. ставиться вопрос, пересекутся ли эти перпендикуляры, если их продолжить в ту или другую сторону от прямой АВ.
Если на заданный вопрос последует ответ, что прямые не пересекутся, а это учащиеся чувствуют интуитивно, или, наоборот, будет дан ответ, что прямые пересекутся, необходимо указать учащимся, что каждое из сделанных ими утверждений должно быть доказано, т.е. обосновано ссылками на известные им аксиомы и теоремы.
Доказательство: имеем ММ1 перпендикулярно АВ, NN1 перпендикулярно АВ. Докажем, что перпендикуляры ММ1 и NN1, проведенные к одной и той же прямой АВ, не могут пересечься. Предположим противное, а именно - что перпендикуляры ММ1 и NN1 пересекутся в некоторой точке О, тогда получиться треугольник МОN, в котором сумма внутренних углов 1 и 2, равна двум прямым: 1+2=180º, что невозможно, так как сумма двух углов треугольника всегда меньше 180º. Отсюда следует, что принятое допущение, что перпендикуляры ММ1 и NN1 при своем продолжении пересекутся в некоторой точке О, неверно. Итак, два перпендикуляра к одной и той же прямой не пересекутся, сколько бы их не продолжать.
После такого разбора учащимся указывается, что на плоскости можно расположить две прямые так, что они никогда не пересекутся, и дается определение: прямые, которые расположены в одной плоскости и не пересекаются, называются параллельными.
Возвращаясь затем к полученному выше выводу о взаимном положении двух перпендикуляров к одной и той же прямой, преподаватель отмечает, что этот вывод можно формулировать в виде теоремы: две прямые перпендикулярные к третьей, параллельны.
Вводится знак для обозначения параллельности двух прямых: АВ║CD.
Преподаватель должен подчеркнуть, что необходимым условием для параллельности двух прямых является то, что прямые должны лежать в одной плоскости. Это указание должно быть выявлено в определении, а потому определение параллельных прямых без слов « которые расположены в одной плоскости» является неполным.
Следует использовать модель куба для показа параллельных и непараллельных прямы.
Так, ребра куба АВ и А1D1 не пересекаются: они лежат в разных плоскостях, поясняется, что такие прямые, в отличие от прямых параллельных, называются скрещивающимися.
Ребра же куба АВ и А1В1, АА1 и ВВ1, ВВ1 и СС1 также не пересекаются , однако они попарно расположены в одной плоскости, они параллельны.
Теорема о двух перпендикулярах на плоскости к одной и той же прямой является одним из признаков параллельных прямых. Необходимо показать учащимся ее практическое приложение, для чего следует решить задачу: На плоскости даны две точки А и В. Провести через эти точки две параллельные прямые.
Построение. Через точки А и В Проводится прямая МN, и в этих же точках строится к прямой МN перпендикуляры АС и ВD (АС║BD). Продолжая оба перпендикуляра по другую сторону от МN, имеем: СС1║DD1. Это одно и многочисленных решений, через точки А и В можно провести бесконечно много пар параллельных прямых. Действительно, проводим на плоскости ряд произвольных прямых и к ним через точки А и В перпендикуляры. Получаем, что в каждой из точек А и В пучок прямых. При этом каждой прямой пучка с центром в точке А соответствует определенная прямая, ей параллельная, принадлежащая пучку с центром в точке В.
Новости образования:
Способы эффективного обучения математике
Современное содержание математического образования направлено главным образом на интеллектуальное развитие младших школьников, формирование культуры и самостоятельности мышления. Важнейшим фактором в развитии мыслительных операций служат педагогические системы развивающего обучения [22]. Обучение н ...
Современная система образования
Современное образование - сложное и многогранное общественное явление. Образование есть целостная система учебных, воспитательных форм педагогической деятельности, ориентированной на социальный заказ, социальные потребности гражданского общества. Современное образование - это одно из средств решени ...
Понятие и виды самооценки
Человек не только накапливает информацию о себе, но и переживает определенное отношение к ней Это отношение сосредотачивается у самооценке Самооценка - оценка личностью самой себя, своих возможностей, качеств и места среди других людей. [6, c.12] Самооценка имеет комплексный характер, поскольку рас ...