Характеристика задач на построение

Страница 12

Следует учитывать, что понятие «геометрическое ме­сто точек» необходимо и в курсе алгебры при изучении графиков простейших функций в VII-VIII классах. График функции определяется как геометрическое место точек плоскости, координаты которых являются соответственными значениями аргумента и функции. Понятие графика необходимо и в курсе физики, где в последние годы все большее значение приобретает графический метод.

В VI-VII классах нельзя отказываться и от решения задач на построение методом геометрических мест, од­ним из основных методов конструктивной геометрии.

Решая задачи на построение, учащиеся учатся при­менять свои знания, ибо они должны сами отвечать на поставленные вопросы. В настоящее время главной задачей учителей математики является не столько сообще­ние математических фактов, определений, формул, тео­рем, сколько необходимость учить детей мыслить, учить их самостоятельно работать.

2. Учащиеся VI класса не сразу сознательно, глубоко усвоят понятие «геометрическое место точек». Важно, чтобы они с данными словами связывали более полную группу геометрических фигур, чтобы понятие охваты­вало целый класс, а не один – два отдельных примера. Учащиеся должны видеть различные примеры геометри­ческих мест точек в различных формулировках, чтобы на основе анализа и синтеза осознать общность этого понятия, охватывающего обширный класс геометриче­ских фигур, создать себе соответствующее представление об этом понятии.

Трудным для понимания шестиклассников является и абстрактное понятие «множество». Приводимые при­меры множеств (множество учащихся, деревьев в саду и т.п.), в большинстве своем, есть конечные множества, а почти все геометрические места точек, рассматривае­мые в школьном курсе геометрии, являются бесконечны­ми точечными множествами.

3. Понятие геометрического места точек, обладаю­щих некоторым свойством, вводим на примере геометрического места точек, равноудаленных от двух данных точек. После изучения признаков равенства прямоуголь­ных треугольников решаем задачу: «Найти точку, рав­ноудаленную от двух данных точек А и В» (рис. 27).

Рис. 27

Учащиеся обычно указывают лишь точку О, середину отрезка АВ. А нет ли на плоскости еще точек, равноуда­ленных от А и В? При построе­нии с помощью циркуля не- скольких таких точек учащиеся самостоятельно припоминают свойство точек оси симметрии и говорят, что точек, равноудаленных от А и В, будет много, все они лежат на оси симмет­рии данных точек А и В.

Можно непосредственно, основываясь на признаках ра­венства прямоугольных тре­угольников, доказать, что всякая точка, равноудаленная от данных точек А и В, лежит на их оси симметрии, то есть на перпендикуляре, проведенном к отрезку АВ через его середину, и наоборот, всякая точка этого перпендику­ляра равноудалена от точек А и В.

После этого даем определение геометрического места точек, обладающих некоторым свойством, как множест­ва всех точек, обладающих этим свойством, и только та­ких точек, и предлагаем учащимся сформулировать ре­зультат решения задачи и записать в тетради, что гео­метрическое место точек, равноудаленных от двух точек, есть ось симметрии данных точек.

Здесь впервые встречаемся не с отдельной, фиксиро­ванной точкой, а с любой точкой прямой. До этого уча­щиеся почти всегда имели дело с неподвижными, опре­деленными по положению точками, а здесь точка может перемещаться некоторым образом, но все время она об­ладает определенным свойством. Поэтому большую пользу окажет учащимся наглядное пособие с непо­движными точками А и В и перемещающейся по их оси симметрии точкой О, соединенной резинкой с точками А и В, с помощью которого хорошо разъяснить смысл выражения: «Любая точка оси симметрии равноудалена от А и В».

Примечание. Включение в определение лишних с научной точки зрения слов «и только таких точек» вызвано педагогическими соображениями. В противном случае в определении явно не выделяется необходимость доказательства двух взаимно обратных теорем для утверждения, что та или иная фигура является геометрическим местом точек, обладающих определенным свойством.

4. Целесообразно в качестве домашнего задания к этому уроку предложить учащимся повторить определе­ние окружности (§ 12 по учебнику Н. Н. Никитина). То­гда на уроке, уточнив, что все точки окружности нахо­дятся от центра на одном и том же расстоянии, а всякая точка, взятая внутри (вне) окружности, находится от ее центра на расстоянии, меньшем (большем) радиуса, делаем вывод, что окружность можно рассматривать как геометрическое место точек плоскости, находящихся на данном расстоянии R от данной точки О.

Страницы: 7 8 9 10 11 12 13 14 15 16 17

Новости образования:

Анализ передового педагогического опыта
В.А.Сухомлинский писал: «Без игры нет и не может быть полноценного умственного развития. Игра – это огромное светлое окно, через которое в духовный мир ребенка вливается живительным потоком представлений, понятий. Игра – это искра, зажигающая огонек пытливости и любознательности». Создание игровой ...

Особенности языка программирования Pascal ABC
В языке Pascal ABC любая переменная характеризуется своим типом. Под типом в данном случае понимается множество значений, которые может принимать переменная и, как следствие, множество операций, допустимых над переменной.Паскаль является языком жесткой типизации. Это означает, что тип переменной оп ...

Возрастные особенности в восприятии вербальных и невербальных компонентов в общении
Социально-перцептивные способности, в структуру которых входит и способность к психологической интерпретации невербального поведения, являются одной из основных составляющих всего отражательно-поведенческого взаимодействия человека с человеком, группой людей. Невербальная передача информации появля ...

Главное на сайте

Copyright © 2024 - All Rights Reserved - www.focuseducation.ru