Характеристика задач на построение

Страница 15

Знание свойств симметричных относительно оси фи­гур позволяет рассматривать решение основных задач на построение с помощью циркуля и линейки до изучения признаков равенства треугольников и понятия геометри­ческого места точек. Сами построения являются для учащихся понятными и естественными.

Действительно, чтобы построить точку, симметричную относительно некоторой прямой данной точке А, не ле­жащей на этой прямой, построим две окружности, про­ходящие через точку А с центрами в произвольных точ­ках О1, и О2 данной прямой. Так как для окружностей данная прямая является осью симметрии, то вторая их общая точка А1 будет искомой точкой. Но этим самым мы решили и задачу: «Через точку А, не лежащую на данной прямой, пронести перпендикуляр к этой прямой,

Аналогичным образом решается и задача о построе­нии оси симметрии двух данных точек; одновременно по­лучаем решение задачи о делении данного отрезка по­полам.

Так как биссектриса угла есть ось симметрии его сторон, то для построения ее достаточно найти на сторонах угла две точки, симметричные относительно искомой оси, каковыми будут точки, находящиеся на равных расстояниях от вершины угла, принадлежащей оси симметрии. В результате задача свелась к предыдущей с той лишь разницей, что достаточно найти одну точку оси, так как вторая точка – вершина угла – нам известна.

Этим же построением решается и задача о проведении к прямой перпендикуляра через данную на ней точку, так как искомый перпендикуляр по существу есть биссектриса развернутого угла с вершиной в данной точке.

Применение осевой симметрии значительно упро­щает и облегчает усвоение таких разделов темы «Окруж­ность», как свойство диаметра, перпендикулярного к хорде, свойство дуг, заключенных между параллельными хордами. Без большой затраты времени можно тщатель­но рассмотреть весьма важный для приложений вопрос о взаимном расположении окружностей, если обратить внимание учащихся на симметричность общих точек двух окружностей относительно их линии центров. Уча­щиеся смогут самостоятельно указать необходимые и до­статочные условия касания двух окружностей, что нуж­но при изучении соответствующих геометрических мест центров окружностей, касающихся данной.

В VII-VIII классах метод осевой симметрии часто применяется вместе с другими методами.

Метод центральной симметрии.

1. В течение двух лет мы знакомили учащихся с цен­тральной симметрией примерно так, как в учебнике Н.Н. Никитина. Рассматривали построение и свойства точек, отрезков и треугольников, симметричных соответствующим данным фигурам относительно некоторой точки О. Затем рассматривали вопрос о центре симмет­рии параллелограмма, решая предварительно задачу: «Если в параллелограмме через точку О пересечения его диагоналей провести произвольную прямую, то отрезок прямой, заключенный между его сторонами, делится в точке О пополам». Получив соответствующий вывод о центре симметрии параллелограмма, вводим понятие центрально-симметричных фигур, подчеркивая, что каж­дой точке М фигуры, имеющей центр симметрии в точ­ке О, соответствует другая точка М1 этой же фигуры, отстоящая от О на такое же расстояние, как и точка М, и лежащая на прямой МО.

Решали такие задачи на построение с применением центральной симметрии;

1) Построить треугольник по двум сторонам и ме­диане, проведенной к третьей стороне.

2) Дан угол и точка Р внутри него. Провести через эту точку прямую так, чтобы отрезок ее, заключен­ный между сторонами угла, делился в данной точке пополам.

У большинства учащихся не создавалось правильного представления о применении здесь центральной сим­метрии, они рассматривали эти решения, как решения задач дополнением искомых треугольников до паралле­лограммов.

Причины того, что это понятие оказалось трудным при таком изложении, следующие: во-первых, понятие центральной симметрии точек и фигур вводилось фор­мально, без активного участия учащихся в формирова­нии этого понятия; во-вторых, примеры задач на постро­ение для иллюстрации применения центральной симмет­рии подобраны неудачно; в-третьих, в курсе геометрии по установившейся традиции центральная симметрия не находит должного применения.

2. Результаты оказались значительно лучшими, когда понятие центральной симметрии начали вводить так же, как и понятие осевой симметрии. Объяснение этого по­нятия сопровождалось показом соответствующих на­глядных пособий, а также изделий, для которых учащи­еся данного класса выполняли разметку, принимая точку пересечения базисных линий за центр симметрии и от­кладывая на одной и той же прямой по разные от этой точки стороны равные отрезки.

Страницы: 10 11 12 13 14 15 16 17 18

Новости образования:

Влияние учения на развитие личности
На умственное развитие оказывает принципиальное влияние деятельность учения. При этом определяющее значение имеет усвоение и развитие речи в системе обучения. К программному развитию речи относятся следующие виды обучения и развития ребенка: во-первых, усвоение литературного языка, подчиненного нор ...

Методика проведения занятия по теме «Узлы и зацепления»
Тема: Узлы и зацепления. Тип урока: Урок введения нового материала; урок-практикум. Цели урока: Обучающая: Обеспечить формирование на наглядном уровне целостной системы ведущих знаний о предмете топология. Ознакомить с понятием узлов и зацеплений на наглядном уровне для дальнейшего изучения данного ...

Взгляды педагога на мир
Как известно, философские знания являются основой мировоззренческих взглядов, поэтому именно они определяют те принципы и положения, которые В.А. Сухомлинский изложил в своей воспитательной теории. Педагог размышлял над поистине важными философскими проблемами, каждый раз заново переосмысливая и по ...

Главное на сайте

Copyright © 2024 - All Rights Reserved - www.focuseducation.ru