Характеристика задач на построение

Страница 17

Для лучшего усвоения метода подобия при изучении теоретического материала необходимо проводить подго­товительную работу, в частности, разъяснять, хотя бы в простейших случаях (треугольники, параллелограм­мы), условия, определяющие форму фигуры с точностью до подобия. Так как учащиеся должны уметь выполнять построения вспомогательных фигур, подобных искомым, то нужно повторить изученные ранее методы и приемы геометрических построений, в особенности, метод геомет­рических мест, что можно сделать при изучении пропор­циональности отрезков в связи с новым материалом.

Учащиеся, повторив материал, относящийся к методу геометрических мест, легче воспринимают метод подо­бия. При решении задач методом подобия, как и при ре­шении задач методом геометрических мест, отбрасываем одно из условий, в результате чего задача становится неопределенной. Ее решением при применении метода геометрических мест является бесконечное множество точек, удовлетворяющих оставшимся условиям, а в слу­чае метода подобия получаем бесконечное множество фигур, объединенных одним свойством; все они подобны искомой фигуре. Взяв одну из них, мы с помощью по­добного преобразования, учитывая ранее отброшенное условие, получаем искомую фигуру. Эта аналогия помо­гает лучше усвоить метод подобия.

2. При изучении понятия «центр подобия» и при построении многоугольника, подобного данному, разъясняем уча­щимся, что соответственные точки всегда лежат на одной прямой, проходящей через центр подобия, а прямая, не проходящая через центр подобия, преобразуется в парал­лельную ей прямую. После того как учащиеся ознакомят­ся с построением многоугольника, подобного данному, разбираем сущность метода подобия, решая несложную задачу, в которой были бы ярко выражены характерные признаки этого метода. Например: «Построить треуголь­ник, знай два его угла А и С и высоту hb».

Эту задачу можно решить различными способами, например методом параллельного переноса или методом геометрических мест. Разобрав предлагаемые учащи­мися решения и повторив сущ­ность применяемых методов, указываем на возможность ре­шения еще одним способом: с применением подобия фигур.

Если не учитывать высоту искомого треугольника, то по двум данным углам мы можем построить бесконечное множество треугольников, но все они будут подобны искомому. Построим один из них, например треуголь­ник А1В1С1 (рис. 50).

Рис. 50

Чтобы выяснить, будет ли он искомым, проведем высоту BlD1 и сравним ее с данной высотой. В общем случае полученная высота не будет равна данной. Если, например, BlD1 меньше данной высоты в два раза, значит, и стороны треугольника нужно увеличить в два раза, ибо сходственные высоты в подобных треугольниках относятся как сходственные стороны. Если высота BlD1 больше данной в несколько раз, тогда нужно во столько же раз уменьшить и стороны треугольника. Следовательно, треугольник А1В1С1 нужно подобно преобразовать так, что­бы высота была равна данному отрезку hb, для чего до­статочно определить коэффициент подобия и выбрать центр подобия. Коэффициент подобия равен отношению данной высоты к настроенной высоте BlD1, то есть . За центр подобия выберем, например, точку B1, тогда очень легко построить точку, соответствующую точке D1, для чего достаточно отложить отрезок B1D = hв. Проведя пря­мую СА || С1А1, получим искомый треугольник АВ1С, который действительно удовлетворяет всем условиям задачи.

Построения, выполняемые с применением транспор­тира и треугольника, просты, доказательство и исследо­вание элементарны, и все внимание учащихся концен­трируется на уяснении сущности нового для них способа решения задач на построение.

Повторяем решение задачи: не учитывая высоты, по данным углам построили треугольник, подобный иско­мому; учитывая затем заданную высоту, подобно пре­образовали построенный треугольник в искомый. Такой способ решения задачи называется методом подобия. Этим методом можно решать лишь такие задачи па по­строение, условия которых можно разбить на две части, одна из которых определяет фигуру с точностью до по­добия (два утла треугольника), а вторая часть условия определяет размеры фигуры (высота).

Таким образом, метод подобия при решении задач на построение состоит в следующем; отбросив условие, определяющее размеры фигуры, по оставшимся усло­виям строим фигуру, подобную искомой; учитывая затем ранее отброшенное условие, подобно преобразовываем построенную фигуру в искомую.

Страницы: 12 13 14 15 16 17 18

Новости образования:

Списки с Владимирской иконы
С Владимирской иконы часто писались списки, часть которых получили особые именования. Некоторые чтимые чудотворные списки Владимирской иконы ( с показом видеоряда списков ): Волоколамская Владимирская (вклад Малюты Скуратова в Иосифо-Волоколамский монастырь, ныне в собрании Центрального музея древн ...

Использование демонстрационного эксперимента в школьном курсе химии
Специфика химии как науки экспериментально-теоретической поставила учебный эксперимент на одно из ведущих мест. Химический эксперимент в процессе обучения позволяет ближе ознакомить учащихся не только с самими явлениями, но и с методами химии как науки. Демонстрационным называют эксперимент, которы ...

Нетрадиционные методы развития и коррекции речи детей 5 - 6 лет
Речь является одной из важнейших психических функций человека и сложной функциональной системой, в основе которой лежит использование знаковой системы языка в процессе общения. Речевое общение создает необходимые условия для развития различных форм деятельности. Овладение ребенком речью способствуе ...

Главное на сайте

Copyright © 2025 - All Rights Reserved - www.focuseducation.ru