Характеристика задач на построение

Страница 13

Предлагаем учащимся самостоятельно найти все точки, находящиеся от данной точки О на расстоянии, меньшем чем R. И при разборе этого задания подчерки­ваем, что геометрическим местом точек может быть пря­мая, окружность и даже круг, а в дальнейшем будет показано, что геометрическим местом точек, обладаю­щих некоторым свойством, может быть луч, отрезок прямой, две прямые или две окружности и даже отдельные точки. Разбирая такие конкретные примеры, мы пока­зываем учащимся разнообразие видов тех множеств то­чек, которые могут быть геометрическими местами точек.

Затем надо показать учащимся, что одно и то же гео­метрическое место точек может встречаться в различ­ных формулировках, для чего сравниваем, например, из­вестное им геометрическое место точек, равноудаленных от двух данных точек, с такими, как геометрическое место точек, равноудаленных от концов дачного отрезка; геометрическое место вершин равнобедренных треуголь­ников с общим основанием (середина основания уже исключается).

5. Применяя эти геометрические места точек, решаем задачи методом геометрических мест, начиная с простей­шей задачи. Какие же задачи считать простейшими?

Сущность метода геометрических мест состоит в сле­дующем:

1) Решение задачи сводим к отысканию точки, удо­влетворяющей определенным условиям.

2) Отбрасываем одно из этих условий, получим гео­метрическое место точек, удовлетворяющих оставшимся условиям.

3) Отбрасываем затем какое-нибудь другое условие, получим новое геометрическое место точек, удовлетворяющих остальным условиям.

4) Искомая точка, удовлетворяющая всем условиям, является точкой пересечения полученных геометрических мест.

Какую задачу ни возьмем, одновременно второй и третий этапы отсутствовать не могут, ибо тогда это не была бы задача на метод геометрических мест. Но без одного из этих этапов можно обойтись, если в условии указать геометрическую фигуру, которой должна при­надлежать искомая точка. Чтобы избежать и первого этапа, достаточно задачу сформулировать в виде: «Най­ти точку .».

Следовательно, простейшими задачами на метод гео­метрических мест будут задачи вида: «На какой-либо фигуре найти точку, удовлетворяющую определенным условиям.

Метод осевой симметрии.

1. Осевая симметрия – это первый из видов движе­ния, преобразования, с которым учащиеся встречаются в систематическом курсе геометрии.

В настоящее время в геометрии большое значение имеют конструктивные навыки, при помощи которых учащиеся овладевают методами преобразования одних геометрических фигур в другие, и постепенно знакомятся с важной идеей геометрического преобразования, кото­рое является аналогом функциональной зависимости в геометрии.

Курсы алгебры и арифметики подчинены одной идее, идее функциональной зависимости. Мы стремимся воспи­тывать у учащихся функциональное мышление, умение находить законы связей между величинами. Подчинив курс геометрии идее геометрических преобразова­ний, аналогу функциональной зависимости, подчиняем все изложение курса математики одной руково­дящей идее.

В новой программе по геометрии значительное внима­ние уделено геометрическим преобразованиям, то есть таким операциям, когда каждой точке одной фигуры по некоторому закону ставится в соответствие определенная точка другой фигуры. В средней школе из геомет­рических преобразований рассматриваются различные виды движений, а также подобие фигур.

Изучение движения в средней школе принесет ощутимые плоды, если эти преобразования станут осно­вой курса геометрии, а не придатком, органически не связанным с ним. Движение должно служить одним из основных методов доказательства многих теорем геомет­рии в VI-VII классах. Более того, идея движения может быть положена в основу построения значительной части курса геометрии. Излагаемый материал приобретает кинематический характер, значительно облегчается по­нимание учащимися образования и построения геомет­рических фигур. Применяя понятие осевой симметрии, можно значительно усовершенствовать школьный курс геометрии. Например, применение свойств оси симметрии позволяет довольно просто изложить три признака ра­венства треугольников, специальные случаи равенства прямоугольных треугольников и ряд других тем из главы «Треугольники».

2. Различные виды движений дают возможность ре­шать практически важные задачи на построение, дока­зательство и задачи вычислительного характера. Поэтому все изложение должно сопровождаться упражнениями, среди которых предпочтение следует отдавать задачам на построение и на доказательство. Нужно решать и за­дачи на вычисление, особенно с практическим содержа­нием, но в большинстве случаев при решении таких за­дач геометрическая сторона вопроса в значительной сте­пени поглощается арифметическими и алгебраическими операциями.

Страницы: 8 9 10 11 12 13 14 15 16 17 18

Новости образования:

Значение дидактических игр
«Игра - это жизненная лаборатория детства, дающая тот аромат, ту - атмосферу молодой жизни, без которой эта пора ее была бы бесполезна для человечества. В игре, в этой специальной обстановке жизненного материала, есть самое здоровое ядро разумной школы детства» С.Т. Шацкий. Реально смена игровой де ...

Анализ результатов опытно- экспериментальной работы
Задача заключительного этапа нашей работы- провести комплексный анализ результатов опытной работы и на основании этого сделать вывод об эффективности игровой технологии как рационального пути преобразования знаний, умений, навыков младшими школьниками, повышения мотивации к учебной деятельности. По ...

Программа элективного курса «Элементы наглядной топологии»
Пояснительная записка Предлагаемый элективный курс предназначен для учащихся 10-х классов математического профиля. Курс рассчитан на 16 часов, на второе полугодие. Программа элективного курса включает материал об элементах наглядной топологии, которая нашла себе ряд блестящих применений для описани ...

Главное на сайте

Copyright © 2025 - All Rights Reserved - www.focuseducation.ru