Доказательство.
1. После того как фигура построена, необходимо установить, удовлетворяет ли она условиям задачи, то есть показать, что фигура, полученная из данных элементов определенным построением, удовлетворяет всем условиям задачи. Значит, доказательство существенно зависит от способа построения. Одну и ту же задачу можно решать различными способами, в зависимости от намеченного при анализе плана построения, а поэтому, и доказательство в каждом случае будет свое, Рассмотрим задачу: «Построить трапецию по четырем сторонам» (рис. 26).
Рис. 26
Проведя СК||ВА, решение задачи сводим к построению треугольника КСD по трем сторонам: две равны боковым сторонам трапеции (АК = КС), а КD = АD – ВС. Построим треугольник КСD, и, считая сторону АD построенной, дополним его до трапеции различными способами:
1) Проведем ВС||АD и, отложив меньшее основание, соединим полученную точку В с А Доказательство сведется к установлению равенства: АВ = КС.
2) Если провести АВ||КС и ВС||АD, то тогда уже надо доказать, что АВ = КС и ВС = АК.
3) Если провести прямую СВ||DА и на ней найти точки В и В1, отстоящие от А на расстоянии, равном боковой стороне, то в этом случае точка В1 будет посторонней и лишь точка В будет искомой, причем доказательство (ВС = АК) уже усложняется.
4) Если отыскивать точку В, как точку пересечения окружностей (А; АВ) и (С; СВ), то из двух точек В и В2 только точка В будет искомой.
Третий и четвертый случаи подчеркивают необходимость доказательства. В анализе мы находим необходимые условия, которым должно подчиняться построение, чтобы получить искомую фигуру. Надо еще установить, что найденные необходимые условия являются и достаточными, то есть, что построенная фигура удовлетворяет всем требованиям задачи.
2. При решении простейших задач, когда все условия задачи находят непосредственное отражение в плане построения, нет необходимости доказывать, что фигура, полученная из данных элементов таким построением, является искомой. Например: «Построить треугольник по двум сторонам и углу между ними». Здесь доказательство сводится к простой проверке, такие ли взяли стороны, как данные, и будет ли построенный угол равен данному. В подобных задачах доказательство является излишним, ибо правильность решения обеспечивается соответствием построения анализу и данным условия задачи.
Но иногда не все условия отражаются в плане анализа и при построении. Например, в случае (3) точка В действительно должна лежать на ВС и отстоять от точки А на данном расстоянии. Но этого недостаточно, так как отрезок АВ должен быть параллельным СК.
Так как доказательство зависит от избранного решения, то, не ознакомившись с анализом и построением, нельзя сказать, правильно пли неправильно проведено доказательство.
3. Доказательство не просто зависит от анализа и построения, между ними существует взаимосвязь и взаимообусловленность. Построение проводится по плану, составленному при анализе. Таких планов можно указать несколько. Построение и доказательство являются своеобразным критерием правильности и рациональности составленного плана. Если план не осуществим имеющимися инструментами или же построение оказывается нерациональным, мы вынуждены искать новый план решения. Аналогичным образом и доказательство, и исследование влияют на анализ, предопределяя нередко выбор плана решения.
4. Для упрощения доказательства целесообразно предлагать учащимся и такие задачи на доказательство, которые не только служат для развития математического мышления или для пополнения объема знаний, но и могут быть использованы при решении задач на построение. Например, при изучении частных видов параллелограмма решаем задачи:
1) Если у параллелограмма диагонали взаимно перпендикулярны, то такой параллелограмм есть ромб.
2) Если у параллелограмма диагональ делит один из углов пополам, то такой параллелограмм есть ромб.
3) Если у параллелограмма диагонали равны, то такой параллелограмм есть прямоугольник и т. п.
При решении задач на построение методом подобия, выбрав центр подобия и найдя коэффициент подобия, выполняем подобное преобразование многоугольника, подобного искомому, почти всегда не тем способом, который изложен в учебнике А. П. Киселева, и всякий раз вынуждены проводить отдельное доказательство, что полученный многоугольник – искомый. Целесообразно ознакомить учащихся с общепринятым способом построении, основанным на том, что у гомотетичных многоугольников сходственные стороны попарно параллельны. Благодаря этому при решении почти всех задач на построение многоугольников методом подобия доказательство, что полученный многоугольник искомый, значительно упрощается.
Новости образования:
Анализ результатов опытно- экспериментальной работы
Задача заключительного этапа нашей работы- провести комплексный анализ результатов опытной работы и на основании этого сделать вывод об эффективности игровой технологии как рационального пути преобразования знаний, умений, навыков младшими школьниками, повышения мотивации к учебной деятельности. По ...
Цели обучения истории
Развиваясь, любое общество всегда ставило и ставит перед школой определенные социально-обусловленные цели, поскольку их реализация необходима для его функционирования. Обучение истории, как и любому другому предмету, предполагает, прежде всего, развитие внимания учеников. Без устойчивого внимания н ...
Использование ценностно-ориентированных
воспитывающих ситуаций для младших школьников на уроках и во внеурочное время с
целью формирования адекватной самооценки
Ценностно-ориентированные воспитывающие ситуации для установления адекватной самооценки можно планировать и использовать на уроках литературного чтения, окружающего мира, изобразительного искусства, русского языка и математики, а также во внеурочной деятельности. Средствами таких ситуаций могут выс ...