Характеристика задач на построение

Страница 14

3. Известно, что осознанные знания могут быть полу­чены только в процессе активной и творческой деятель­ности самостоятельно или под руководством учителя. При изучении осевой симметрии имеются большие возможности привлечь учащихся к формированию самого понятия. Действительно, учащиеся неоднократно наблю­дали в жизни примеры симметричных фигур, многие из таких предметов они рисовали или изготовляли на уро­ках в начальной школе и в V классе: вырезали симмет­ричные фигуры из бумаги, рисовали симметричные орнаменты, листья и цветы, изготовляли симметричные предметы из дерева и металла, применяя симметричные инструменты.

Анализируя эти знакомые учащимся примеры, осо­бенно примеры предметов, которые были объектом или орудием трудa учащихся в школьных мастерских, на уроках домоводства или общественно полезного труда, мы постепенно формируем представление о симметрич­ных фигурах.

Часть работ (изготовление мотыги, планки для граб­лей и т. п.), требующих построения точек, симметричных относительно определенной оси, учащиеся изготавливают до изучения соответствующего материала в курсе геометрии. поэтому при объяснении осевой симметрии, чтобы подчеркнуть значение этого понятия, в качестве симметричных фигур использовали пособия, изготовленные учащимися этого же класса в школьных мастерских, причем выбирали всегда два однотипных пособия 9молотки, стамески), одно из которых сделано аккуратно, точно по чертежу, а второе такое, у которого все размеры выдержаны, но нарушена симметричность. Совместными усилиями учащиеся выяснили, почему второе пособие получилось плохим, и как нужно было правильно сделать разметку.

4. В школьном курсе геометрии выражение «симмет­рия» имеет двоякий смысл: оно обозначает и вид движе­ния (преобразование) и свойство плоской фигуры, обла­дающей симметрией, которая при соответствующем дви­жении переходит сама в себя. Это различие мы должны учитывать, ибо в преподавании приходится иметь дело с каждым из этих истолкований симметрии. И одна из задач учителя – добиться того, чтобы учащиеся воспри­няли симметрию как один из способов преобразования одной фигуры в другую, а не как свойство неподвижной фигуры.

Поэтому после введения определения симметричных относительно оси точек, внимание учащихся переклю­чаем на практику построения взаимно симметричных относительно оси фигур, для чего решаем задачи вида:

1) Построить точку, симметричную данной точке от­носительно данной прямой.

2) Построить отрезок (прямую), симметричный дан­ному отрезку (прямой) относительно данной прямой.

3) Построить треугольник, симметричный данному треугольнику относительно данной прямой.

4) Построить окружность, симметричную данной ок­ружности относительно данной прямой.

5) Построить треугольник, симметричный данному прямоугольному треугольнику относительно а) его ка­тета; б) его гипотенузы.

При решении этих задач одновременно устанавливаем и равенство взаимно симметричных отрезков, углов и других фигур, иллюстрируя наши утверждения пере­гибанием чертежа по оси симметрии, что помогает най­ти и сделать понятным способ решения задачи. Напри­мер, при решении задач вида: «Даны две прямые. Най­ти на них точки, симметричные относительно третьей прямой» очень удобно нанести все три прямые на кальку и перегнуть чертеж по третьей прямой. Тогда решение задачи становится очевидным и понятным для всех учащихся. Таким же образом решаем задачи: а) Даны прямая и треугольник. Найти на одной прямой и на кон­туре треугольника точки, симметричные друг другу от­носительно другой прямой, б) Даны окружность и тре­угольник. Найти на окружности и на контуре треуголь­ника точки, симметричные друг другу относительно данной прямой.

Чтобы показать учащимся важность и необходимость умений и навыков в построении симметричных относительно оси точек, кроме разбора известных уже им при­меров, полезно выполнить разметку какого-нибудь из­делия, которое нужно будет изготовлять в ближайшее гремя.

5. Обучение должно вестись так, чтобы учащиеся усвоили знания не как изолированные, оторванные от других, а как подготовленные предшествующими зна­ниями, и которые естественно включаются в после­дующие. Поэтому в дальнейшем, где только возможно, следует использовать понятие и свойства осевой симмет­рии и правила построения симметричных фигур при изу­чении новых геометрических образов и при решении до­ступных учащимся задач на построение.

Страницы: 9 10 11 12 13 14 15 16 17 18

Новости образования:

Краткий перечень требований к ведению тетрадей по химии
Необходимо иметь рабочую тетрадь для ведения записи в классе и для домашних заданий. В ней записывается краткий план урока с уравнениями реакций, делаются зарисовки демонстрационных приборов. Определения понятий записываются в том случае, если они недостаточно ясно даны в учебнике. Если ученик реша ...

Многолетний процесс построения спортивной тренировки
Рациональное построение многолетней спортивной тренировки зависит от масштаба времени, в пределах которого протекает тренировочный процесс. Микроцикл – это малый цикл тренировки, чаще всего с недельной или около недельной продолжительностью, включающий обычно от двух до нескольких занятий. Различаю ...

Теоретические аспекты развития памяти младших школьников
Память человека можно определить как психофизические и культурные процессы, выполняющие в жизни функции запоминания, сохранения и воспроизведения информации. Память является жизненно важнейшей основополагающей способностью человека. Без памяти невозможно нормальное функционирование личности и ее ра ...

Главное на сайте

Copyright © 2024 - All Rights Reserved - www.focuseducation.ru