Например, когда учащиеся изучают число «один», в учебнике приводятся изображения одноэлементных множеств: одно ведро, одна девочка, один стул и т.д.; когда изучают число «три», рассматривают множества, содержащие три элемента: три кубика, три камешка и др. Так происходит при изучении всех чисел первого десятка, но число элементов в множестве каждый раз определяется путем пересчета, т.е. количественное и порядковое числа, а также их запись выступает в тесной взаимосвязи.
Сущность счета заключается в установлении взаимно однозначного соответствия между множествами, подлежащими счету, и некоторым отрезкам натурального ряда. Процесс счета закончится тогда и только тогда, если считаемое множество конечно, видим, что понятие счета тесно связано с понятием отрезка натурального ряда и понятием конечного множества. Введем определение этих понятий.
Определение 1. Отрезком N натурального ряда называется множество натуральных чисел, не превосходящих натурального числа а. Например, отрезок N 7 есть множество натурального ряда чисел или можно сказать, что отрезок натурального ряда N состоит из всех таких натуральных чисел б, что б < а.
Отрезки натурального ряда обладают рядом свойств.
1. Для любого натурального числа а верно, что 1 N а.
Действительно, что при а=1 имеем, что 1 N1= (1). Если же а > 1, то 1 < а, и, следовательно, 1 содержится в отрезке Nа.
2. Если число б содержится в отрезке Nа и б ≠ а, то и число б ≠ 1 также содержится в отрезке Nа.
Заметим, что при б Nа и б ≠ а имеем б < а, а потому существует такое натуральное число с, что а = б + с. Если с=1, то б + 1 = a, и, значит, оно содержится в отрезке Nа. Если же с 1, то с – 1 - натуральное число, и, следовательно, а = б - с = (б – 1) + (с – 1), но тогда б + 1 < а, т.е. б + 1 - натуральное число, принадлежащее отрезку Nа.
Определение 2. Множество А называется конечным, если существует взаимнооднозначное отображение этого множества на некоторый отрезок Na натурального ряда чисел.
Теорема 1. Одно и тс же множество А не может быть взаимно однозначно отображено на два различных отрезка натурального ряда чисел.
Доказательство: Если бы множество А можно было взаимно однозначно отобразить на два различных отрезка натурального ряда Nа и Nб (а ≠ в), то существовало бы и взаимно однозначное отображение Nа на Nб. Поэтому достаточно доказать, что при а ≠ в взаимно однозначно отображение Na на Nв невозможно. Кроме того, между любыми неравными натуральными числами имеет место одно из отношений: а < в либо а > в. Поэтому доказательство данной теоремы сводится к доказательству утверждения: если а < в, то не существует взаимно однозначного отображения Nа и Nв. Оно проводится с помощью математической индукции по а.
При а = 1 нам надо доказать, что не существует взаимно однозначного отображения множества N1 = (1) на множество Nв, где в > 1. Действительно, при в > 1 множество Nв содержит число в ≠ 1, и потому при любом отображении N1 в Nв хотя бы одно из чисел 1 или в не будет образом числа 1.
Предположим теперь, что для некоторого числа а невозможно взаимно однозначное отображение Nа и Nв при а < в, и докажем, что тогда при а + 1 - с невозможно взаимно однозначное отображение Nа + 1 на Nс. Если бы такое отображение существовало и образом числа а + 1 было бы число х, то, выбрасывая а + 1 из Nа + 1 и х из Nс, мы получили бы взаимно однозначное отображение Nа + 1 на Nс-(х). Но очевидно, множество Nс – (х) можно взаимно однозначно отобразить Nс-1. Поэтому существовало бы взаимно однозначное отображение Nа на Nс-1, что невозможно, так как из а+1 <с следует а < в = С-1, а мы предположили, что при а < в нет взаимного однозначного отображения Nа на Nв. Итак, теорема верна при а = 1 и из нее справедливости при а следует, что она выполняется и при а + 1. Значит, теорема доказана для любых а и в. Из теоремы 1 следует, что конечное множество А равномощно только одному отрезку натурального ряда Nа, и потому ему может быть поставлено в соответствие единственное число а. Это число а называют числом элементов в множестве А и пишут: п (А) = а. Число а есть количественное натуральное число.
Новости образования:
Цель, задачи и содержание внеурочной работы по учебным предметам
В школьной практике учитель имеет возможность по своему усмотрению в зависимости от конкретных условий организации внеурочной работы определить ее цель и задачи. Стратегической же целью организации внеурочной работы школьников по учебному предмету является создание условий для развития и саморазвит ...
Влияние содержания и приемов преподавания истории на характер познавательной
деятельности учащихся
На уроках истории учитель стремится содержанием учебного материала, приемами, средствами преподавания, манерой изложения (интонациями, паузами, ударениями в речи) активизировать внимание учащихся и вызвать у них адекватную эмоциональную реакцию на изучаемый материал, активизировать умственные и уче ...
Обследование и анализ уровня сформированности знаний
о многообразии живой природы старших дошкольников
Цель: - проанализировать педагогические условия экологического образования детей старшего возраста; - выявить уровень сформированности представлений о многообразии живой природы у детей старшего дошкольного возраста. В своей работе мы исходили из того, что экологическое воспитание старших дошкольни ...