Антиподом глубины мышления является поверхность мышления. Именно этим можно объяснить обычное для учащихся затруднение, возникающее у них при ответе на следующий вопрос: «Является ли последовательность вида 2,2,2, … прогрессией, если является, то какой?» Усвоив поверхностно определение прогрессии, учащиеся не понимают, что ответ на этот вопрос целиком полностью зависит от того, оговорена ли в определении возможность равенства нулю разности (или единице знаменателя прогрессии).
Целенаправленность мышления характеризуется стремлением осуществлять разумный выбор действий при решении какой-либо проблемы, постоянно ориентируясь на поставленную той проблемой цель, а также в стремлении отыскать наиболее кратчайшие пути ее достижения.
Наличие у школьников этого качества мышления особенно важно при поиске плана решения математических задач, при изучении нового материала и т. д.
Этому способствуют специально подобранные учителем задачи, вводящие в изучение новой темы, посредством которых перед учащимися раскрывается целесообразность ее изучения и последовательность рассмотрения относящихся к ней вопросов.
Целенаправленность мышления дает возможность более экономичного решения многих задач, которые обычным способом решается если не сложно, то слишком долго.
Целенаправленность мышления тесно связана с таким нравственным качеством личности, как любознательность, своеобразным антиподом которому является любопытство. В основе того и другого качества личности лежат условные рефлексы, в силу которых избирательная активность человека всегда имеет целенаправленный, намеренный характер.
Первое из этих качеств (любознательность) обогащает знания и опыт человека именно в силу своей целенаправленности; любопытство, превращаясь в самоцель, гасит стремление человека к познанию, как только оно удовлетворено. Поэтому в обучении математике следует всячески поощрять любознательность учащихся и не поощрять любопытство.
«Чтобы обучаться, нам нужно только понимать то (приспосабливаться к тому), чему нас учат. Но, чтобы с пользой применять знания, нужно уметь задавать вопросы типа: «Так ли это?», «Почему?» – и особенно самый мощный из них: «А что, если .?» Чело-пек, который постоянно задает такие вопросы, уже не просто учится».
Антиподом целенаправленности является бесцельность мышления. Как уже отмечалось, целенаправленность мышления дает возможность более экономичного решения многих задач, которые обычным способом решаются если не сложно, то слишком долго. Тем самым целенаправленность мышления способствует проявлению такого качества, как рациональность мышления, характеризуемого склонностью к экономии времени и средств для решения поставленной проблемы, стремлением отыскать оптимально простое в данных условиях решение задачи, использовать в ходе решения схемы, символику и условные обозначения.
Рациональность мышления часто проявляется при наличии широты мышления, которая характеризуется способностью к формированию обобщенных способов действий, имеющих широкий диапазон переноса и применения к частным, нетипичным случаям; умение охватить проблему в целом, не упуская при этом имеющих значение деталей; обобщить проблему, расширить область приложения результатов, полученных в процессе ее разрешения. Поэтому широту мышления часто называют обобщенностью мышления.
Это качество мышления проявляется в готовности школьников принять во внимание новые для них факты в процессе деятельности в известной (знакомой им) ситуации.
Новости образования:
Учёт психологических особенностей подростков в патриотическом
воспитании
Учащиеся 15 – 18 лет проявляют высокую социальную активность, выражающуюся не только в стремлении получить, возможно больше разнообразной информаций и знаний, но и желание участвовать в общественной жизни учебного заведения.
[
30
] Палагина Н.Н. считает, что чувство взрослости подталкивает подростк ...
Характерные особенности учеников, обучавшихся по развивающей программе
Ученики обоих классов первоначально мною были отмечены как самостоятельные, работоспособные, с хорошо развитым логическим мышлением, речью, сформированностью познавательного интереса. Учащиеся активно включались в работу, задавали вопросы, выдвигали гипотезы, обоснованно отстаивали свою точку зрени ...
Джироламо Саккери
Критика евклидовского обоснования геометрии, продолжалась на протяжении нескольких веков и ставшая особенно острой в 19 столетии, привела к попыткам нового дедуктивного построения геометрии, отвечающего современным требованиям науки. Одним из ученых, предвосхитивших неевклидову геометрию, был италь ...